RELATIVE INTERIOR

e 1 is a relative interior point of C, if x is an
interior point of C relative to aff(C).

e ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C'is a convex set,
z € ri(C) and T € cl(C'), then all points on the
line segment connecting x and x, except possibly
Z, belong to ri(C).

e Proof of case where x € C: See the figure.

e Proof of case where T ¢ C: Take sequence
{zr} C C with x — Z. Argue as in the figure.
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Figure 4: Convex hulls of sets of points

4 Convex sets

Convex sets are defined via affine combinations of two elements with nonnegative coefficients.

Definition 4.1. A subset X C A of a real vector space or a real affine space is called convez if for all z,y € X
and all A € [0,1] we have
Arx+(1- Ny € X.

Ezxamples:

e the empty set (),

e the whole space A,

e singletons {z},

e affine subspaces,

e open or closed affine half-spaces,

e open or closed norm balls = 4+ 7B, © 4+ rB; around arbitrary points.

Here open and closed affine half-spaces are sets of the form {x € Ala(x) < b} and {x € Ala(x) < b},
respectively, where a is a non-constant linear functional on A and b € R.

4.1 Convex hull

Definition 4.2. Let z1,...,z; be points in an affine space A. Then Zle A;x; is called a convexr combination
of the points z1,...,xg ifozl)\i =land \; >0,i=1,...,k.

The convex hull of a subset X C A of an affine space is the set of all convex combinations of elements of X.
It is denoted by convX.

Lemma 4.3. A set X is convex if and only if it equals its convexr hull.

Proof. Let X = convX. Then, in particular, convex combinations of any two elements of X belong to X. Hence
X is convex.

Let X be convex. We show by induction on k that a convex combination of k£ elements of X is in X. The
definition of convexity yields the base of the induction for k& = 2. Suppose we have proven that any convex
combination of k — 1 elements of X isin X. Let x1,...,x, € X and let x = Zle A;x; be a convex combination.
If any of the coefficients \; vanishes, then x is actually a convex combination of strictly less than k elements
and is in X by the induction hypothesis. Assume A; > 0 for all i =1,..., k. Then we have

J
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k-1 k=1 (Y
T = Z AN + Mgz = ( )\i> Z ﬁl‘i + Mezr = (1 — M\p)y + Apg.
=1 =1

k—1
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Here y = Zf;ll Ekéi i is a convex combination of k — 1 elements of X and is hence in X. The point = has
j=1"J
then been represented as convex combination of two elements of X and is hence also in X. O

The following assertion follows immediately from Definition 4.1.
Lemma 4.4. Arbitrary intersections of convex sets are convex.

Corollary 4.5. The convex hull of a set X 1is the smallest convex set which contains X, namely the intersection
of all convex sets containing X .

Proof. Since convex combinations of convex combinations are again convex combinations of the original points,
the convex hull of X is equal to its own convex hull. By Lemma 4.3 it is hence convex. On the other hand, any
convex set Y containing X must contain at least the convex hull of X, because Y D X implies Y = convY D
convX. O

Further examples of convex sets:
e polytopes (convex hulls of a finite set of points),
e polyhedra (finite intersections of closed affine half-spaces),

e simplices (convex hull of an affinely independent set of points).

4.2 Operations preserving convexity

We now consider more operations which preserve convexity.

Definition 4.6. Let X,Y be subsets of a vector space. The set
X+Y ={z+ylzeX, yeY}

is called Minkowski sum of X,Y.
This definition can be extended to the case where one of the sets X, Y is a subset of an affine space and the
other a subset of the underlying vector space.

The following assertions follow easily from the definition of convexity.
e the Minkowski sum of convex sets is convex,
e images of convex sets under affine maps are convex,

e pre-images of convex sets under affine maps are convex,

the interior X of a convex set X is convex,
e the relative interior 7 X of a convex set X is convex,

e the closure ¢l X of a convex set X is convex.

We now come to the interplay between convexity and topology.

Lemma 4.7. Let X # () be convex. Then ri X # ().
For non-convex sets this is in general not the case (consider X = Q C R, then i X = ().

Proof. The affine hull aff X possesses an affine basis of points in X. To construct such a basis, pick an arbitrary
point z; € X. If aff {z1} = off X, then {z;} is an affine basis of aff X. If aff {z1} # aff X, then there exists a
point zo € X \ aff {x1}. This point x5 is affinely independent of z1. We now repeat the process by comparing
aff {z1,x2} with ¢ff X and adjoin another affinely independent point 23 € X if these affine hulls are not equal.
Obviously the affine hulls become equal after dim aff X + 1 steps.
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Figure 5: Proof of Lemma 4.8. Radii are shown in italic.

Let hence x4, ...,2; € X form an affine basis of the affine hull of X. Then the simplex ¥ = conv{x1,...,x%}
is a subset of X, and the relative interior of ¥ is given by the set

k k
i=1 i=1

Since aff ¥ = aff X, any point in 73 % is also in ri X. O
We now need an auxiliary lemma.

Lemma 4.8. Let X be a convez set, let x € ri X and y € clX. Then the half-open segment [z,y) = { \x + (1 —
ANy | A€ (0,1]} is a subset of ri X.

Proof. By definition there exists r > 0 such that (x +rB1) Naff X C X. Let A € (0,1] and z = Az + (1 — A)y.
Set p = 1’}:’/\. Since y € ¢l X, there exists w € X such that ||y — w|| < p.
Set u = z+w—y. Then u € aff X as an affine combination of points in aff X. Moreover, ||[u—z|| = [|lw—y|| < 7.

Hence (u+ (r — |lu — z||)B1) Naff X C (x +7rB1) Naff X C X. We then get

A(w+(r = [lu—zl)Bi) Naff X]+ (1 = Nw = [z +w—y+Ar —[[y —wl|))B] N aff X C X
by the convexity of X. But
ztw—y+Ar—|ly—wl)BL 2 z+ A(r = |ly —wl) = [ly — wl)) Bx

and A(r — ||y —wl|) — [ly —w|[ = (1 + A)(p — ||y — w][) > 0. Therefore (z + (1+ A)(p — ||y —wl[[)B1) Naff X C X,
and z € 1 X. O

This will allow us to show that for convex sets the relative interior and the closure can be obtained from
each other.

Lemma 4.9. Let X be a convex set. Then clri X = clX and ri clX = ri X.

Proof. Clearly clri X C ¢lX and riclX D ri X.

Let y € ¢IX. Then X # () and there exists a point # € ri X. It follows that [z,y) C ri X, and hence
yecrX.

Let now z € riclX. Then X # () and there exists z € 7i X. Further there exists ¢ > 0 such that
(z+eB1)Naff X C clX. We have [z, z] C aff X, and there exists y € (z + eB1) N aff X such that y lies on the
line through = and z and such that z € [z,y). But then z € ri X by Lemma 4.8. O
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