RELATIVE INTERIOR

• x is a relative interior point of C, if x is an interior point of C relative to aff(C).

• ri(C) denotes the *relative interior of* C, i.e., the set of all relative interior points of C.

• Line Segment Principle: If C is a convex set, $x \in ri(C)$ and $\overline{x} \in cl(C)$, then all points on the line segment connecting x and \overline{x} , except possibly \overline{x} , belong to ri(C).

• Proof of case where $\overline{x} \in C$: See the figure.

• Proof of case where $\overline{x} \notin C$: Take sequence $\{x_k\} \subset C$ with $x_k \to \overline{x}$. Argue as in the figure.

Figure 4: Convex hulls of sets of points

4 Convex sets

Convex sets are defined via affine combinations of two elements with nonnegative coefficients.

Definition 4.1. A subset $X \subset A$ of a real vector space or a real affine space is called *convex* if for all $x, y \in X$ and all $\lambda \in [0, 1]$ we have

$$\lambda x + (1 - \lambda)y \in X$$

Examples:

- the empty set \emptyset ,
- the whole space A,
- singletons $\{x\}$,
- affine subspaces,
- open or closed affine half-spaces,
- open or closed norm balls $x + rB_1^o$, $x + rB_1$ around arbitrary points.

Here open and closed affine half-spaces are sets of the form $\{x \in A \mid a(x) < b\}$ and $\{x \in A \mid a(x) \le b\}$, respectively, where a is a non-constant linear functional on A and $b \in \mathbb{R}$.

4.1 Convex hull

Definition 4.2. Let x_1, \ldots, x_k be points in an affine space A. Then $\sum_{i=1}^k \lambda_i x_i$ is called a *convex combination* of the points x_1, \ldots, x_k if $\sum_{i=1}^k \lambda_i = 1$ and $\lambda_i \ge 0, i = 1, \ldots, k$.

The convex hull of a subset $X \subset A$ of an affine space is the set of all convex combinations of elements of X. It is denoted by convX.

Lemma 4.3. A set X is convex if and only if it equals its convex hull.

Proof. Let X = convX. Then, in particular, convex combinations of any two elements of X belong to X. Hence X is convex.

Let X be convex. We show by induction on k that a convex combination of k elements of X is in X. The definition of convexity yields the base of the induction for k = 2. Suppose we have proven that any convex combination of k-1 elements of X is in X. Let $x_1, \ldots, x_k \in X$ and let $x = \sum_{i=1}^k \lambda_i x_i$ be a convex combination. If any of the coefficients λ_i vanishes, then x is actually a convex combination of strictly less than k elements and is in X by the induction hypothesis. Assume $\lambda_i > 0$ for all $i = 1, \ldots, k$. Then we have

$$x = \sum_{i=1}^{k-1} \lambda_i x_i + \lambda_k x_k = \left(\sum_{i=1}^{k-1} \lambda_i\right) \sum_{i=1}^{k-1} \frac{\lambda_i}{\sum_{j=1}^{k-1} \lambda_j} x_i + \lambda_k x_k = (1-\lambda_k)y + \lambda_k x_k.$$

Fall 2022

Here $y = \sum_{i=1}^{k-1} \frac{\lambda_i}{\sum_{j=1}^{k-1} \lambda_j} x_i$ is a convex combination of k-1 elements of X and is hence in X. The point x has then been represented as convex combination of two elements of X and is hence also in X.

The following assertion follows immediately from Definition 4.1.

Lemma 4.4. Arbitrary intersections of convex sets are convex.

Corollary 4.5. The convex hull of a set X is the smallest convex set which contains X, namely the intersection of all convex sets containing X.

Proof. Since convex combinations of convex combinations are again convex combinations of the original points, the convex hull of X is equal to its own convex hull. By Lemma 4.3 it is hence convex. On the other hand, any convex set Y containing X must contain at least the convex hull of X, because $Y \supset X$ implies $Y = convY \supset convX$.

Further examples of convex sets:

- polytopes (convex hulls of a finite set of points),
- polyhedra (finite intersections of closed affine half-spaces),
- simplices (convex hull of an affinely independent set of points).

4.2 Operations preserving convexity

We now consider more operations which preserve convexity.

Definition 4.6. Let X, Y be subsets of a vector space. The set

$$X + Y := \{ x + y \, | \, x \in X, \ y \in Y \}$$

is called *Minkowski sum* of X, Y.

This definition can be extended to the case where one of the sets X, Y is a subset of an affine space and the other a subset of the underlying vector space.

The following assertions follow easily from the definition of convexity.

- the Minkowski sum of convex sets is convex,
- images of convex sets under affine maps are convex,
- pre-images of convex sets under affine maps are convex,
- the interior X^o of a convex set X is convex,
- the relative interior ri X of a convex set X is convex,
- the closure cl X of a convex set X is convex.

We now come to the interplay between convexity and topology.

Lemma 4.7. Let $X \neq \emptyset$ be convex. Then $ri X \neq \emptyset$.

For non-convex sets this is in general not the case (consider $X = \mathbb{Q} \subset \mathbb{R}$, then $ri X = \emptyset$).

Proof. The affine hull aff X possesses an affine basis of points in X. To construct such a basis, pick an arbitrary point $x_1 \in X$. If $aff \{x_1\} = aff X$, then $\{x_1\}$ is an affine basis of aff X. If $aff \{x_1\} \neq aff X$, then there exists a point $x_2 \in X \setminus aff \{x_1\}$. This point x_2 is affinely independent of x_1 . We now repeat the process by comparing $aff \{x_1, x_2\}$ with aff X and adjoin another affinely independent point $x_3 \in X$ if these affine hulls are not equal. Obviously the affine hulls become equal after dim aff X + 1 steps.

Figure 5: Proof of Lemma 4.8. Radii are shown in *italic*.

Let hence $x_1, \ldots, x_k \in X$ form an affine basis of the affine hull of X. Then the simplex $\Sigma = conv\{x_1, \ldots, x_k\}$ is a subset of X, and the relative interior of Σ is given by the set

$$ri \Sigma = \left\{ \sum_{i=1}^{k} \lambda_i x_i \, | \, \lambda_i > 0, \, \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

Since $aff \Sigma = aff X$, any point in $ri \Sigma$ is also in ri X.

We now need an auxiliary lemma.

Lemma 4.8. Let X be a convex set, let $x \in ri X$ and $y \in clX$. Then the half-open segment $[x, y) = \{\lambda x + (1 - \lambda)y \mid \lambda \in (0, 1]\}$ is a subset of ri X.

Proof. By definition there exists r > 0 such that $(x + rB_1) \cap aff X \subset X$. Let $\lambda \in (0, 1]$ and $z = \lambda x + (1 - \lambda)y$. Set $\rho = \frac{\lambda r}{1+\lambda}$. Since $y \in clX$, there exists $w \in X$ such that $||y - w|| < \rho$. Set u = x + w - y. Then $u \in aff X$ as an affine combination of points in aff X. Moreover, ||u - x|| = ||w - y|| < r.

Set u = x + w - y. Then $u \in aff X$ as an affine combination of points in aff X. Moreover, ||u-x|| = ||w-y|| < r. Hence $(u + (r - ||u - x||)B_1) \cap aff X \subset (x + rB_1) \cap aff X \subset X$. We then get

$$\lambda[(u + (r - ||u - x||)B_1) \cap aff X] + (1 - \lambda)w = [z + w - y + \lambda(r - ||y - w||)B_1] \cap aff X \subset X$$

by the convexity of X. But

$$z + w - y + \lambda(r - ||y - w||)B_1 \supset z + (\lambda(r - ||y - w||) - ||y - w||)B_1$$

and $\lambda(r - ||y - w||) - ||y - w|| = (1 + \lambda)(\rho - ||y - w||) > 0$. Therefore $(z + (1 + \lambda)(\rho - ||y - w||)B_1) \cap aff X \subset X$, and $z \in ri X$.

This will allow us to show that for convex sets the relative interior and the closure can be obtained from each other.

Lemma 4.9. Let X be a convex set. Then cl ri X = clX and ri clX = ri X.

Proof. Clearly $cl \ ri \ X \subset cl X$ and $ri \ cl X \supset ri \ X$.

Let $y \in clX$. Then $X \neq \emptyset$ and there exists a point $x \in riX$. It follows that $[x, y) \subset riX$, and hence $y \in clriX$.

Let now $z \in ri clX$. Then $X \neq \emptyset$ and there exists $x \in ri X$. Further there exists $\varepsilon > 0$ such that $(z + \varepsilon B_1) \cap aff X \subset clX$. We have $[x, z] \subset aff X$, and there exists $y \in (z + \varepsilon B_1) \cap aff X$ such that y lies on the line through x and z and such that $z \in [x, y)$. But then $z \in ri X$ by Lemma 4.8.